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Abstract

Small-angle X-ray scattering (SAXS) patterns from slit
cameras (`Kratky cameras') require a subsequent
desmearing procedure in order to obtain the pinhole
scattering curve that is suitable for subsequent structure
analysis. Since the corresponding integral equation
contains a singularity, its solutions are usually unstable
and fail if large noise is present. It is demonstrated how
analytical stability can be achieved by physically reliable
conditioning of the experimental data, introduction of
the Moore±Penrose pseudoinverse of the equation's
discretized integral operator and solving the equation by
a FFT algorithm. This ensures the consistency of the
solution as well as its stability, and hence its conver-
gence. This solution can account for arbitrarily nonsym-
metrical primary-beam pro®les. The algorithm does not
require antecedent smoothing of the scattering curve. It
allows on the contrary low-pass ®lter smoothing during
desmearing but remains stable despite large noise
contributions.

1. Introduction

Structure analysis of biological objects or of polymers
often requires investigations on the length scale of
1±100 nm. Then, small-angle X-ray scattering (SAXS) is
a powerful and widely used tool since, using Cu K�
radiation (� � 0.154 nm), Bragg angles 2� will be less
than 5� (Glatter & Kratky, 1982). The low scattering
power of the light elements in such materials yields,
however, at point collimation of the primary beam weak
scattering patterns. The problem is usually overcome by
use of slit cameras as suggested ®rst by Kratky (1954)
(`Kratky camera'), where a collimated parallel primary
beam is used with a length (coordinate u) of several
centimetres and an intensity distribution Ip(u) (Fig. 1)
(Glatter & Kratky, 1982; Kratky, 1954). Such an
experimental procedure, however, almost always
requires a defolding step (`desmearing') in order to get
that (pinhole) intensity pattern I0(s) from the experi-
mental one Iexp(s) that then allows further evaluation
during structure analysis. The introduced functions are
related by (Glatter & Kratky, 1982; Kratky, 1954; Strobl,
1970)

Iexp�h� �
R�1
ÿ1

V�u0�I0��h2 � u02�1=2� du0; �1�

where

V�u0� � Ru0�w

u0ÿw

Ip�u� du �2�

with the width 2w of the counter window and

h � D tan�arcsin�s�=2�� �3a�
s � 2 sin �=�; �3b�

where s is the scattering vector, h and u0 are the
geometrical coordinates perpendicular and parallel to
the primary beam, respectively, in the registration plane,
and D is the sample±registration-plane distance. These
relations are easily derived from Fig. 1. Considering that
h2 � u02 � b2 and de®ning

G�x� � �V�x1=2� � V�ÿx1=2��=2x1=2; G�x� � 0 at x � 0;

�4�
equation (1) can be rewritten, following Strobl (1970), as

Iexp�h� �
R1
h2

G�b2 ÿ h2�I0�b� db2 � GI0�h�; �5�

where G is the corresponding integral operator. Equa-
tion (5) relates, via the geometrical scattering condition
as expressed by G, the experimental intensity distribu-
tion Iexp to the pinhole intensity function I0 and, for
further structure analysis, must be solved for the latter.
This is not a trivial problem since, by virtue of
G�x� � G�V�x�; x�, the integrand of the integral in (5)
approaches in®nity somewhere in the domain of inte-
gration, i.e. it contains a singularity at b2 � h2 or
G�x � 0�. The singularity is introduced by the coordi-
nate transformation (4), which, however, transforms
equation (1) into the easily tractable linear convolution
equation (5). Deconvolution and, therefore, solving the
problem would, in principle and disregarding the
singularity for the moment, be possible by the Fourier
transformation technique if the range of integration
could be suitably adapted. Then,



I0��b2�1=2� � Fÿ1 F�Iexp�b2��
F �G�b2 ÿ h2��
� �

; �6�

where F designates the Fourier transformation, would
be a solution of (5). In fact, the singularity prohibits such
a procedure.

Owing to the mentioned singularity, numerical
algorithms to solve integral equations like (5) often yield
unstable solutions I0(h), which means that small errors
in Iexp may cause large errors in I0. This can be caused by
the noise in measured scattering patterns. In addition,
discretization errors may arise and a ®ner discretization
does not necessarily result in a more reliable solution
(Louis, 1981). These errors may become obvious by
`dips' in the calculated pinhole scattering function I0 or
can sometimes even cause `negative' intensities or non-
existent peaks in I0. The term `ghosts' summarizes these
phenomena (Louis, 1981). All this may indicate non-
existing structural features.

The spectral decomposition, i.e. the Fourier transform
FfGg, of the integral operator G [equations (4) and (5)]
can be directly computed from the geometrical scat-
tering conditions. It is known that Fourier transforms are
nonsensitive to singularities in their stem functions. If
those spectral components of the inverse Gÿ1 of G that
are linked to the singularity behaviour of G, i.e. those
with the highest amplitude, are suppressed, the so-called
`Moore±Penrose pseudoinverse' G�ÿ1 (Penrose, 1955;
Golub & van Loan, 1995) is obtained. Its use instead of
Gÿ1 during subsequent calculations would therefore
make the solution algorithm stable. Then, a ®ner
discretization would yield a better solution.

In the present paper, it will be shown that the named
problems can all be avoided, and a stable solution of the
desmearing problem can be found by use of the integral
equation Iexp(I0) in its convolution form [equation (5)].
In (5), G(0) is replaced by a physically reliable value,
which ensures the consistency of the solution and
such energy conservation. Finally, the Moore±Penrose
pseudoinverse of the equation's discretized integral

operator is introduced, and (5) is solved for I0 by a fast
Fourier transform algorithm according to (6).

2. Theoretical preliminaries

2.1. Overview on introduced concepts

Mazur & Wims (1966) derived for (5) the analytical
solution

I0�h� �
R1
0

fIexp��u02 � h2�1=2�F�u0�=��u02 � h2�1=2g du0;

�7�
where Green's function F(u0) is the solution of the
Volterra equation of the second kind,

F�u0� � �2u0=�� Ru0
0

F�z�K��u02 ÿ z2�1=2� dz � 1 �8�

and

K�z� � 1

z

Z1

0

x�dV�zx�=d�zx�� dx

�1ÿ x2�1=2
: �9�

This approach avoids the mentioned singularity by an
additional integration, this being equivalent to a distri-
bution of the singularity over a ®nite range. Such,
however, an additional smearing step and the additional
problem of solving equation (8) are introduced.

Strobl (1970), whose approach seems to be the most
commonly used, calculated Green's function of (5) for a
trapezoidal Ip(u). The calculation of Green's function is
equivalent to the calculation of the inverse matrix of the
discretized G. The resulting matrix is ill conditioned
since G is singular (Strobl, 1970; ProÈ ssdorf & Silber-
mann, 1991; Golub & van Loan, 1995). This is the reason
for occasional artefacts like the already mentioned
ghosts that adulterate the solution. The reliability of
the solution can be enhanced by suitable numerical
measures but the computational effort rises consider-
ably and the basic problem, i.e. the instability of the
solution, remains. The condition number c1 � 1=d
(Strobl, 1970) (d is the discretization step width of both
G and Iexp as chosen by the program) diverges for that
algorithm with ®ner discretization, which indicates
instability and nonconvergence.

Fedorov et al. (1969) solved the problem by trans-
forming the integral equation into an expression like
�E ÿ A�I0 � Iexp, where E is the unity operator and the
operator A results from Ip(u) by suitable differentia-
tions. In some Hilbert norm, it can be assured that
kAk< 1 and the equation can be solved using a
Neumann series (I0 �

P1
n�0An

Iexp). The already
described problems arise again since the discretized A
tends to have eigenvalues greater or equal to unity (this
in turn violates the condition kAk< 1 for the discretized

Fig. 1. Geometry of slit-collimated small-angle X-ray scattering and
de®nition of coordinates. D: distance sample±registration plane.
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problem). Those eigenvalues belong to eigenvectors that
can again produce the already mentioned artefacts.

Many more attempts to treat the problem can be
found in the literature (e.g. Guinier & Fournet, 1947;
Lake, 1967; Ruland, 1964; Hossfeld, 1968). Their closer
inspection reveals that they all suffer from the same
problem, that is the lack of stability of the solution,
which arises from the singularity of the underlying
integral equation.

2.2. Nature and mathematical origin of ghosts

In Fig. 2, a hypothetic pinhole scattering curve I0(s) is
shown together with its smeared counterpart Iexp(s). The
latter has been desmeared twofold [I 00�s�] according to
Strobl (1970), assuming the intensity distribution along
the slit is trapezoidal. In one of these two examples, an
improper effective accuracy measure "S ~ c1cR (cR is
the condition number contributions of the implemented
Gauss algorithm, the singularity discretization and
others) has been chosen. It can easily be seen how I0(s)
differs then from I00�s� and that coincidence is improved
by increase of the computational effort by e.g. ®ner
discretization near the singularity. The features as
marked by arrows are the already mentioned ghosts, i.e.
blurred side images of the peaks in the original curve.

From (5), it can be concluded that the observed
intensity at a position h is in¯uenced only by contribu-
tions of the pinhole intensity function for which b > h.
Discretized integral operators G and, hence, Gÿ1 will
then be of upper right triangle form (Cramer's rule).
Moreover, owing to the singularity of G at b � h, Iexp(h)
is predominantly determined by I0(b). This is illustrated
by Fig. 3(a), where the smeared intensity pattern is
shown for a �-like pinhole scattering function,
I0�b� � ��bÿ b0�, and a symmetrically trapezoidal slit
intensity distribution. Then, Iexp�h� � 2b0G�b2

0 ÿ h2�. If,
by erroneous discretization upon numerical evaluations,
the weight of the singularity of G is too low, G will be
somewhat broadened. An observed decay of Iexp(h) can
then only be satis®ed by a discretized function I0(b) with
values smaller than those of the right solution (including
occasionally even negative values) for some b. Such an
`undershot' or `dip' is one kind of the already introduced
`ghosts' and can erroneously be interpreted as a struc-
tural feature. Overestimating the singularity's weight
of G, in contrast, will in an analogous manner give
an overshot, i.e. another kind of ghost. The cited
desmearing approaches will therefore nevertheless work
well if the X-ray intensity pro®le under consideration is
a strictly monotonous falling function or does not
contain narrow peaks lying closely together.

3. Conditioning of experimental data

It is well known that Fourier transformation transforms
peaks or singularities into broad nonsingular courses

and distributes them over the whole de®nition range of
the stem function. It is moreover assumed that the
Fourier discretization errors are negligible with respect
to the Fourier integral weight of the singularity. In order
to obey the latter condition and to make the Moore±
Penrose truncation tractable, the numerical Fourier
transformation must be performed in a suitable manner.
At ®rst, one of the transformation's integration sampling
points is placed exactly at the singularity, i.e. at
b2 ÿ h2 � 0. Then, during discrete Fourier transforma-
tion, for the diverging G(0) another value G�(0) is used,
which nevertheless yields the right value of FfGg at
least at that space frequency k that is dominant for
desmearing. This will ensure consistency of the solution.
This particular space frequency is k � 0 as can be
derived from the following considerations. It follows
from (5) thatR

Iexp�h� dh � R G�h� dh
R

I0�h� dh: �10�
This expresses the energy conservation during smearing
since on both sides of the equation are integral scattered
intensities and the integral pinhole intensity I0(h) is
normalized by the integral illumination strength. It is
moreoverR

Iexp�h� dh � R Iexp�h� exp�ikh� dh k�0 � FfIexpg
�� ��

k�0
:

�11�
The space frequency k � 0 in the Fourier transform
re¯ects therefore the integrated scattered intensity and,
therefore, dominates the desmearing. The procedure to
®nd the proper G�(0) is described below. Finally, since
the slit and, consequently, Ip are of ®nite length, there
must be a value Bq=2 such that G�b2 ÿ h2� � 0 for
b2 ÿ h2 � Bq=2. This allows replacement of the limits of
integration in (5) by �Bq=2. Moreover, we set G�x� � 0
for x 2 �ÿBq; 0� [ �Bq=2;Bq� (cf. Fig. 3b). The range of
integration is then arbitrarily broadened to Bq since
then, for no value of b2 ÿ h2 � Bq can the values of
I0(b2 ÿ h2) affect Iexp(h) and vice versa. Now, a period-
ical representation of Iexp, I0 and G over�Bq is possible.
By these means, moreover, the truncation errors can be
eliminated since the domain of integration is ®nite. This
all allows a `fast Fourier transformation' (FFT) tech-
nique without disturbing the values of I0 in the domain
of interest, i.e. b2 2 �0;Bq=2� (ProÈ ssdorf & Silbermann,
1991). In order to meet the usual convention, the coor-
dinate transformation x! y � Fx=2Bq should be made
where F 2 2N (N integer) is the number of FFT sampling
points in these new coordinates. This transforms the
FFT sampling points to integer positions. I0(h) can then
be calculated according to

I0�h2� � 1

2Bq

FFTÿ1
FFTfIexp��b2 ÿ h2�1=2�g

FFTÿ1�G�b2 ÿ h2��
� �

: �12�

Care has to be taken to translate this formal equation
during numerical calculations correspondingly. In the
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denominator of equation (12), the back transformation
instead of the forward transformation must be used
since, following Strobl (1970), the argument b2 ÿ h2 has
been chosen for G instead of h2 ÿ b2. The FFT can be

performed by the usual Butter¯y algorithm (van Loan,
1992).

In order to evaluate (12), as announced, a substitute
G�0 for G0 � G�b2 ! h2� has to be determined that can

Fig. 2. Comparison of a hypothetical pinhole scattering curve with its experimental counterpart as slit-smeared with a symmetrically trapezoidal
primary beam and desmeared according to Strobl (1970). An improper effective accuracy "S, that is, a too ®ne discretization of G and Iexp in the
computational version of that algorithm, causes some `ghosts' as marked by arrows. However, modelling the original curve is improved by
choosing an adequate "S and enlarging the computational effort. The desmeared scattering curve as obtained by the present algorithm
coincides completely with the original pinhole curve and, within this ®gure, cannot be distinguished from it. Grid size: 200 measuring points in
the measuring range of �s = 0.36 nmÿ1 for the Strobl curve and 32 768 (= 215) for the present algorithm. (a) Complete curves, (b) center parts
[meaning of symbols as in (a)].
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be introduced into the FFTÿ1[G(b2 ÿ h2)]. As G is
de®ned to vanish for all b2 ÿ h2 < 0, and, for
b2 ÿ h2 > 0, G�b2 ÿ h2� ! 1 as b2 ÿ h2 ! 0, two
different values for G0 have to be introduced:
Gÿ0 � lim0>b2ÿh2!0 G�b2 ÿ h2� and G�0 as a formal
substitute for G0 on the side b2 ÿ h2 > 0. Here, Gÿ0 � 0
is set since G � 0 for all b2 ÿ h2 < 0. In the new y
coordinates, it is yl � l and therefore

FFTÿ1�G��kn� �
PF=2ÿ1

l��ÿF=2�;l 6�0

Gl exp�ÿiknl�

� �G�0 �Gÿ0 �=2

� PF=2ÿ1

l�1

Gl exp�ÿiknl� �G�0 =2; �13�

since by de®nition Gl � 0 for l < 0 and
Gl � G�yl� � G�l�. Since, for a trapezoidal Ip(u),
G(x) near x � 0 behaves as O�1=x1=2� [cf. equation (4)]
and its Fourier transform behaves accordingly,
FFTÿ1�G��kn � 0� has the highest weight in (13). G0 is
approximated from (13) with n � 0 and the two-point
integration as performed by the FFT between l � 0 and
l � 1:

�G�0 �G�1��=2 � R1
0

G�l� dl �O�Fÿ1�: �14�

Going back to the original coordinates, we have

G�0 � �F=Bq�
R2Bq=F

0

G��2� d�2 ÿG�2Bq=F�: �15�

Together with equation (4), one ®nally obtains

G�0 � �F=Bq�
R�2Bq=F�1=2

ÿ�2Bq=F�1=2

V�z� dzÿG�2Bq=F�: �16�

The evaluation of the remaining integral is straightfor-
ward. It easily allows also consideration of nonsymme-
trical primary-beam pro®les that can be due to bad
adjustment of the X-ray camera. Equation (16) now

yields a G�0 that permits introduction of an FfGg into
(12) without causing singularity problems.

Finally, the Moore±Penrose inversion is accomplished
directly within the division by FFTÿ1[G](kn) in (12) in
the following manner. If, for some kn, FFTÿ1[G](kn)
becomes smaller than a precision limit " to be de®ned by
the algorithm

FFTÿ1�G��kn�
max8kn

FFTÿ1�G��kn�
� " �17�

[cf. equation (13)], the nominator of (12) is not divided
by this value but multiplied by zero. " is the product of
the condition number c2 of the algorithm

c2 � �max=�min; �18�
where �max and �min are the largest and smallest abso-
lute values of G's eigenvalues and the machine precision
(i.e. essentially the precision remaining for calculations).
It remains limited for all d in contrast to that which rules
the Strobl (1970) algorithm. This ensures analytical
stability. As expressed by equation (17), " is chosen such
that those spectral components of G are cancelled whose
weight after division would exceed the number of their
reliable digits normalized by the value of the most
reliable spectral component. By suitable choice of ", also
those spectral components that have numerical noise
can be eliminated. This, in fact, was one of the initial
aims of the Moore±Penrose inversion (Penrose, 1955).
Use of a small " or c2 is equivalent to the introduction of
a low-pass ®lter.

4. Discussion and concluding remarks

It has already been pointed out that the introduced
desmearing concepts work well for scattering curves
with monotonically falling course or if only broad well
separated maxima are present. They require, however, if
working at all, high computational efforts if the named
conditions are not full®lled. Computation time and
memory need increase usually like N2 (N � 1=d is the
sampling point number) as, e.g., for the Strobl (1970)
algorithm because that is based essentially on a Gauss
algorithm. In contrast, the time and memory needs of
the present algorithm increase proportional to N ln N
and N, respectively, for suf®ciently large N as known for
FFT routines. The reliability of our algorithm is
demonstrated by Fig. 2 where the original pinhole curve
and that desmeared according to the present algorithm
curve coincide within machine precision. It is moreover
easy to consider arbitrary courses of the primary-beam
pro®le including nonsymmetric ones. This reduces the
demands on the adjustment of the X-ray camera.

It should be pointed out that the conventional
desmearing procedures work with a limited number of
sampling points (usually about 200). A ®ner discretiza-
tion causes their failure owing to the instability if noise

Fig. 3. (a) Slit-smeared scattering curve of a �-like pinhole scattering at
b0 for a symmetrically trapezoidal primary beam. (b) De®nition of
the integration interval for the Fourier transformation as illustrated
by the smeared scattering curve of (a).
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contributions are present and leads to an extreme
increase in computational effort. The present algorithm,
on the contrary, allows the use of a huge number of
sampling points with acceptable computational time and
memory as well. The curves of Fig. 2 have been calcu-
lated accordingly. In fact, the analytical stability of the

presented algorithm is of particular importance for noisy
scattering patterns. The effect of instabilities depends
sensitively on the `right' choice of the discretization grid
and such a right choice is almost impossible for noisy
curves. The conventional desmearing routines including
the Strobl algorithm require therefore a careful

Fig. 4. Slit-smeared scattering curve as in Fig. 2 with superimposed noise together with the patterns as desmeared according to the present and to
the Strobl algorithms. Same calculation conditions as in Fig. 2. (a) Complete curves, (b) center part.
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smoothing of the scattering curves prior to desmearing.
Such smoothing with equal weight for all h, on the other
hand, is equivalent to a redistribution of intensity. This
violates energy conservation for that part of the noise,
which stems from the X-ray source. This noise must be
distinguished from the noise of the electronics, and the
distinction of the two contributions is, in principle,
possible if the power spectra are known (the X-ray
source noise, for example, obeys a Poisson distribution).
Owing to the stability of our algorithm, smoothing can
be performed during or even after desmearing without
failure of the procedure. Clearly, it cannot be prevented
that nonscattering contributions to Iexp cause occasion-
ally negative intensities. However, these negative peaks
either bear only a negligible amount of intensity and
correspond to easily removable high-frequency spectral
components of I0 or result from statistical errors which
mimic structure and can be eliminated by increasing the
measuring time. In principle, these problems could be
overcome in the frame of the present algorithm by
performing smoothing during desmearing by, e.g.,
application of a low-pass ®lter on the Fourier transform
of Iexp. This could be performed by proper choice of " as
outlined above but such a procedure can cause another
type of artefact known as Fourier truncation error.

These considerations are illustrated by Fig. 4, which
displays the slit-smeared scattering curve of Fig. 2 with a
superimposed noise and the corresponding calculated
pinhole curves. It can clearly be seen that the present
algorithm reproduces all noise peaks of the smeared
curve adequately in the desmeared pattern owing to its
®ne discretization, whereas the conventional calculation
yields an irregular and arbitrary translation of noise
from which no conclusions on the physics behind it can
be drawn.

It can be summarized that the proposed solution for
the desmearing problem of X-ray small-angle scattering
patterns from slit cameras is consistent and stable from

an analytical point of view. Its numerical conversion is
fast and reliable. It can take advantage of the introduced
algorithms for fast Fourier transforms. The solution can
account for arbitrarily nonsymmetrical primary-beam
pro®les, this being of particular importance since
adjustment of the camera to yield an exact trapezoidal
pro®le can be a laboriously task. The algorithm allows
moreover low-pass ®lter smoothing during desmearing
but remains stable despite large noise contributions.

The authors can provide details of a computer
program.
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